[go: up one dir, main page]

login
A265225
Total number of ON (black) cells after n iterations of the "Rule 54" elementary cellular automaton starting with a single ON (black) cell.
3
1, 4, 6, 12, 15, 24, 28, 40, 45, 60, 66, 84, 91, 112, 120, 144, 153, 180, 190, 220, 231, 264, 276, 312, 325, 364, 378, 420, 435, 480, 496, 544, 561, 612, 630, 684, 703, 760, 780, 840, 861, 924, 946, 1012, 1035, 1104, 1128, 1200, 1225, 1300, 1326, 1404, 1431
OFFSET
0,2
COMMENTS
Take the first 2n positive integers and choose n of them such that their sum: a) is divisible by n, and b) is minimal. It seems their sum equals a(n). - Ivan N. Ianakiev, Feb 16 2019
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
FORMULA
Conjectures from Colin Barker, Dec 08 2015 and Apr 20 2019: (Start)
a(n) = (n+1)*(2*n -(-1)^n +5)/4.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
G.f.: (1+3*x) / ((1-x)^3*(1+x)^2).
(End)
a(n) = n + 1 + (n+1) * floor((n+1)/2), conjectured. - Wesley Ivan Hurt, Dec 25 2016
a(n) = A093353(n) + n + 1, conjectured. - Matej Veselovac, Jan 21 2020
EXAMPLE
From Michael De Vlieger, Dec 14 2015: (Start)
First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row, and the running total up to that row:
1 = 1 -> 1
1 1 1 = 3 -> 4
1 . . . 1 = 2 -> 6
1 1 1 . 1 1 1 = 6 -> 12
1 . . . 1 . . . 1 = 3 -> 15
1 1 1 . 1 1 1 . 1 1 1 = 9 -> 24
1 . . . 1 . . . 1 . . . 1 = 4 -> 28
1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 = 12 -> 40
1 . . . 1 . . . 1 . . . 1 . . . 1 = 5 -> 45
1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 = 15 -> 60
1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 = 6 -> 66
1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 = 18 -> 84
1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 = 7 -> 91
(End)
MAPLE
A265225:=n->1/4*(n+1)*(2*n-(-1)^n+5): seq(A265225(n), n=0..60); # Wesley Ivan Hurt, Dec 25 2016
MATHEMATICA
rule = 54; rows = 30; Table[Total[Take[Table[Total[Table[Take[CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}][[k]], {rows-k+1, rows+k-1}], {k, 1, rows}][[k]]], {k, 1, rows}], k]], {k, 1, rows}]
Accumulate[Total /@ CellularAutomaton[54, {{1}, 0}, 52]]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 05 2015
STATUS
approved