[go: up one dir, main page]

login
A264872
Array read by antidiagonals: T(n,m) = 2^n*(1+2^n)^m; n,m >= 0.
1
1, 2, 2, 4, 6, 4, 8, 18, 20, 8, 16, 54, 100, 72, 16, 32, 162, 500, 648, 272, 32, 64, 486, 2500, 5832, 4624, 1056, 64, 128, 1458, 12500, 52488, 78608, 34848, 4160, 128, 256, 4374, 62500, 472392, 1336336, 1149984, 270400, 16512, 256, 512, 13122, 312500
OFFSET
0,2
COMMENTS
Start with an n X m rectangle and cut it vertically along any set of the m-1 separators. There are binomial(m-1,c) ways of doing this with 0 <= c < m cuts. Inside each of these 1+c regions cut vertically, for which there are 2^(n-1) choices. The total number of ways of dissecting the rectangle into rectangles in this way is Sum_{c=0..m-1} binomial(m-1,c) 2^((1+c)(n-1)) = 2^(n-1)*(1+2^(n-1))^(m-1) = T(n-1,m-1).
The symmetrized version of the array is S(n,m) = T(n,m) + T(m,n) - 2^(m+n) <= A116694(n,m), which counts tilings that start with guillotine cuts either horizontally or vertically, avoiding double counting of the tilings where the order of the cuts does not matter. - R. J. Mathar, Nov 29 2015
FORMULA
T(n,m) = 2^n*A264871(n,m).
T(n,m) <= A116694(n+1,m+1).
EXAMPLE
1, 2, 4, 8, 16, 32, ...
2, 6, 18, 54, 162, 486, ...
4, 20, 100, 500, 2500, 12500, ...
8, 72, 648, 5832, 52488, 472392, ...
16, 272, 4624, 78608, 1336336, 22717712, ...
32, 1056, 34848, 1149984, 37949472, 1252332576, ...
.
The symmetrized version S(n,m) starts
1, 2, 4, 8, 16, 32, ...
2, 8, 30, 110, 402, 1478, ...
4, 30, 184, 1116, 7060, 47220, ...
8, 110, 1116, 11600, 130968, 1622120, ...
16, 402, 7060, 130968, 2672416, 60666672, ...
32, 1478, 47220, 1622120, 60666672, 2504664128, ...
MAPLE
A264872 := proc(n, m)
2^n*(1+2^n)^m ;
end proc:
seq(seq(A264872(n, d-n), n=0..d), d=0..12) ; # R. J. Mathar, Aug 14 2024
MATHEMATICA
Table[2^(n - m) (1 + 2^(n - m))^m, {n, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Nov 27 2015 *)
CROSSREFS
Cf. A000079 (row and column 0), A008776 (row 1), A005054 (row 2), A055275 (row 3), A063376 (column 1).
Sequence in context: A252828 A208314 A078099 * A303306 A347797 A351746
KEYWORD
nonn,tabl,easy
AUTHOR
R. J. Mathar, Nov 27 2015
STATUS
approved