OFFSET
0,9
COMMENTS
LINKS
Alois P. Heinz, Rows n = 0..1000, flattened
George E. Andrews and David Newman, Partitions and the Minimal Excludant, Annals of Combinatorics, Volume 23, May 2019, Pages 249-254.
P. J. Grabner and A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
Brian Hopkins, James A. Sellers, and Dennis Stanton, Dyson's Crank and the Mex of Integer Partitions, arXiv:2009.10873 [math.CO], 2020.
Wikipedia, Mex (mathematics)
FORMULA
G.f.: G(t,x) = Sum_{j>=1} (t^j*x^{j(j-1)/2}*(1-x^j))/Product_{i>=1}(1-x^i).
EXAMPLE
Row n=5 is 2,3,2; indeed, the least gaps of [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1] are 1, 2, 1, 2, 3, 3, and 2, respectively (i.e., two 1s, three 2s, and two 3s).
Triangle begins:
1
0 1
1 1
1 1 1
2 2 1
2 3 2
4 4 2 1
4 6 4 1
7 8 5 2
8 11 8 3
12 15 10 4 1
14 20 15 6 1
21 26 19 9 2
MAPLE
g := (sum(t^j*x^((1/2)*j*(j-1))*(1-x^j), j = 1 .. 80))/(product(1-x^i, i = 1 .. 80)): gser := simplify(series(g, x = 0, 23)): for n from 0 to 30 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, j), j = 1 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, `if`(i=0, [1, 0],
[0, x]), `if`(i<1, 0, (p-> [0, p[2] +p[1]*x^i])(
b(n, i-1)) +add(b(n-i*j, i-1), j=1..n/i)))
end:
T:= n->(p->seq(coeff(p, x, i), i=1..degree(p)))(b(n, n+1)[2]):
seq(T(n), n=0..20); # Alois P. Heinz, Nov 29 2015
MATHEMATICA
Needs["Combinatorica`"]; {1, 0}~Join~Flatten[Table[Count[Map[If[# == {}, 0, First@ #] &@ Complement[Range@ n, #] &, Combinatorica`Partitions@ n], n_ /; n == k], {n, 17}, {k, n}] /. 0 -> Nothing] (* Michael De Vlieger, Nov 21 2015 *)
mingap[q_]:=Min@@Complement[Range[If[q=={}, 0, Max[q]]+1], q]; Table[Length[Select[IntegerPartitions[n], mingap[#]==k&]], {n, 0, 15}, {k, Round[Sqrt[2*(n+1)]]}] (* Gus Wiseman, Apr 19 2021 *)
b[n_, i_] := b[n, i] = If[n == 0, If[i == 0, {1, 0}, {0, x}], If[i<1, {0, 0}, {0, #[[2]] + #[[1]]*x^i}&[b[n, i-1]] + Sum[b[n-i*j, i - 1], {j, 1, n/i}]]];
T[n_] := CoefficientList[b[n, n + 1], x][[2]] // Rest;
T /@ Range[0, 20] // Flatten (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
CROSSREFS
Row sums are A000041.
Row lengths are A002024.
Column k = 1 is A002865.
Column k = 2 is A027336.
The strict case is A343348.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A257993 gives the least gap of the partition with Heinz number n.
A339564 counts factorizations with a selected factor.
A342050 ranks partitions with even least gap.
A342051 ranks partitions with odd least gap.
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Nov 21 2015
STATUS
approved