[go: up one dir, main page]

login
A262690
a(n) = largest square k <= n such that A002828(n-k) = A002828(n)-1.
4
0, 1, 1, 1, 4, 4, 4, 4, 4, 9, 9, 9, 4, 9, 9, 9, 16, 16, 9, 9, 16, 16, 9, 9, 16, 25, 25, 25, 25, 25, 25, 25, 16, 25, 25, 25, 36, 36, 36, 36, 36, 25, 25, 25, 36, 36, 36, 36, 16, 49, 49, 49, 36, 49, 49, 49, 36, 49, 49, 49, 49, 36, 49, 49, 64, 64, 64, 49, 64, 64, 36, 49, 36, 64, 49, 49, 36, 64, 49, 49, 64, 81, 81, 81, 64, 81, 81, 81, 36, 64, 81, 81, 81, 64, 81, 81, 64, 81, 49, 81, 100
OFFSET
0,5
FORMULA
a(n) = A000290(A262689(n)).
Other identities. For all n >= 0:
A262678(n) = n - a(n).
PROG
(Scheme) (define (A262690 n) (A000290 (A262689 n)))
CROSSREFS
Cf. also A048760.
Sequence in context: A064053 A108893 A162281 * A048760 A287392 A035627
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 03 2015
STATUS
approved