[go: up one dir, main page]

login
A261399
a(1)=1; thereafter a(n) = (2/5)*(9*6^(n-2)+1).
2
1, 4, 22, 130, 778, 4666, 27994, 167962, 1007770, 6046618, 36279706, 217678234, 1306069402, 7836416410, 47018498458, 282110990746, 1692665944474, 10155995666842, 60935974001050, 365615844006298, 2193695064037786, 13162170384226714, 78973022305360282, 473838133832161690
OFFSET
1,2
COMMENTS
Partial sums of A081341. - Klaus Purath, Jul 28 2020
LINKS
K. Hong, H. Lee, H. J. Lee and S. Oh, Small knot mosaics and partition matrices, J. Phys. A: Math. Theor. 47 (2014) 435201; arXiv:1312.4009 [math.GT], 2013-2014. See Cor. 2.
FORMULA
G.f.: x-2*x^2*(-2+3*x) / ( (6*x-1)*(x-1) ). - R. J. Mathar, Aug 19 2015
a(n) = 2*A199412(n-2), n>1. - R. J. Mathar, Aug 19 2015
From Klaus Purath, Jul 28 2020: (Start)
a(n) = 7*a(n-1) - 6*a(n-2), n > 2.
a(n) = 6*a(n-1) - 2, n > 1.
a(n) = 3*6^(n-2) + a(n-1), n > 1.
(End)
CROSSREFS
The number 22, the third term here, is the same 22 seen in A261400 and illustrated in a link in that entry.
Cf. A199412.
Sequence in context: A199033 A370695 A086682 * A155862 A088536 A066380
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 19 2015
STATUS
approved