This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section K

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section K


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


k-arcs: A005524
K-free sequences:: A003002, A003003, A003004, A003005

K12 lattice , sequences related to:

K12 lattice, home page for
K12 lattice, theta series of: A004010*

Kagome' lattice: A001665, A005397
Kappa_{12} lattice: see K12 lattice

Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order), sequences related to:

Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 1) A151949*, A099009*, A099010, A069746, A090429, A132155, A151946, A151947, A151950, A056965,
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 2) A151951, A151955, A151956, A151957, A151958, A151959*, A151962, A151963, A151964, A151965, A151966
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 3) A151967, A151968
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 4) A164715, A164716, A164717, A164718, A164719, A164720, A164721, A164723, A164724, A164725, A164726, A164727
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 5) A164728, A164729, A164730, A164731, A164732, A164733, A164734, A164735, A164736
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 6) [base 2] A160761, A163205, A164884, A164885, A164886, A164887
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 7) [base 3] A164993-A165011
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 8) [base 4] A165012-A165031
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 9) [base 5] A165032-A165050
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (10) [base 6] A165051-A165070
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (11) [base 7] A165071-A165089
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (12) [base 8] A165090-A165109
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (13) [base 9] A165110-A165129
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (14) [Joseph Myers's program for sequences related to] See A151949
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): see also RADD sequences
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): see also RATS sequences
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): see also Reverse and Add! sequences
Kaprekar numbers: A006886*, A037042, A053394, A053395, A053396, A053397, A045913, A006887
Kaprekar numbers: see also Columbian or self numbers

Kayles: A002186*

Keith numbers , sequences related to:

Keith numbers: A007629*, A006576*

Kelly, Reed, sequence: A214551
Kempner's curious series: A082838*
Kempner-Mahler number: A007400, A007404*, A036987
Kempner tableaux: A005437, A005438

Kempner numbers, sequences related to:

Kempner numbers: A002034*, A007672
Kempner numbers: see also A011772

Kendall-Mann numbers: A000140*
Kepler's tree of fractions: A020651/A086592, A093873/A093875
keys: A002714
keystrokes: A178715, A193286; see also A000792
Khinchin's constant: A002210 = decimal expansion; A317906 = binary expansion; A002211 = continued fraction; A224851 & A054781 = when n appears in continued fraction; A054866, A054870 = records in continued fraction expansion; A048613 = terms which produce a better approximation to the constant; see also A059101, A059102, A175819
Khinchine's constant: see Khinchin's constant
Khintchine's constant: see Khinchin's constant
Kimberling's puzzle or expulsion array: A006852, A007063*, A035486, A035505, A038807, A038834, A175312
kings, A008746, A334687
kings problem: A002464*, A002493

kissing numbers, sequences related to:

kissing numbers: A001116* (all lattices), A002336 (laminated lattices), A028923 (Kappa_n), A006088 (Barnes-Wall lattices), A034597 (extremal lattice in 24n dimensions), A034598 (second nonzero coefficient)

Klarner-Rado sequences, sequences related to :

Klarner-Rado sequences: see A005658 and references given there

knights , sequences related to:

knights tours: A001230
knights, covering board with: A006075, A006076, A098604
knights, non-attacking: A030978*
knights, see also (1): A003192, A005220, A005221, A005222, A005223, A018836, A018837, A018838, A018839, A018840, A018841
knights, see also (2): A018842, A025588, A025589, A025590, A025599, A025600, A025601, A025602, A030444, A030445, A030446, A030447
knights, see also (3): A030448, A035289, A037009, A047878, A047879, A047881, A047883, A049604

Knopfmacher expansions: A007567, A007568, A007759

knots, sequences related to:

knots : A002863* (prime knots, also has most of the referencers and links), A002864* (alternating), A051763 (non-alternating), A018891 (positive), A122495 (Conway list), A078666 (Conway's basic polyhedra), A086825, A283314, and A283315 (total number)
knote: chord diagrams: A007293, A014595
knots: in a strip of paper: A020735
knots: links: A059739, A173637
knots: quantum: A261400, A261399
knots: rational: A018240, A336398
knots: Vasiliev invariants: A007478, A014596, A014605
knots: see also A173637, A176538

Knuth, Donald, sequences related to:

Knuth's Fibonacci or circle product: A101330, A135090
Knuth's sequence (or Knuth numbers): A002977, A003817, A007448*, A108853, A179526

Kobon triangles: A006066, A032765

Kolakoski sequence, sequences related to:

Kolakoski sequence: A000002*
Kolakoski sequence: see also (1) A001083, A006928, A013947, A013948, A022292, A022294, A022295, A022296, A022327, A025503, A025504, A042942
Kolakoski sequence: see also (2) A049705, A078880, A064353

Kolakowski sequence: see Kolakoski sequence
Kotzig factorizations:: A005702
Kronecker (-1,n): A034947
Kubelski sequence: A056064

Kummer's conjecture, sequences related to:

Kummer's conjecture: A000921, A000922, A000923

K_12 lattice: see K12 lattice
K_{12} lattice: see K12 lattice


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]