[go: up one dir, main page]

login
A259760
Triangle read by rows: T(n,k) is the number of partial idempotent mappings (of an n-chain) with breadth exactly k.
0
1, 1, 1, 1, 2, 3, 1, 3, 9, 10, 1, 4, 18, 40, 41, 1, 5, 30, 100, 205, 196, 1, 6, 45, 200, 615, 1176, 1057, 1, 7, 63, 350, 1435, 4116, 7399, 6322, 1, 8, 84, 560, 2870, 10976, 29596, 50576, 41393, 1, 9, 108, 840, 5166, 24696, 88788, 227592, 372537, 293608
OFFSET
0,5
REFERENCES
F. AlKharosi, W. AlNadabi and A. Umar, "Combinatorial results for idempotents in full and partial transformation semigroups", (submitted).
LINKS
Haoliang Wang, Robert Simon, The Analysis of Synchronous All-to-All Communication Protocols for Wireless Systems, Q2SWinet'18: Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless and Mobile Networks (2018), 39-48.
FORMULA
T(n,k) = binomial(n,k) * Sum_{m=0..k} binomial(k,m)*m^(k-m).
EXAMPLE
T(3,2) = 9 because there are exactly 9 partial idempotent mappings (of a 3-chain) with breadth exactly 2, namely: (12-->11), (12-->22), (12-->12), (13-->11), (13-->33), (13-->13), (23-->22), (23-->33), (23-->23).
Triangle starts:
1;
1, 1;
1, 2, 3;
1, 3, 9, 10;
1, 4, 18, 40, 41;
...
PROG
(PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(n, k)*sum(m=0, k, binomial(k, m)*m^(k-m)), ", "); ); print(); ); } \\ Michel Marcus, Jul 15 2015
CROSSREFS
Row sums give A080108(n+1).
Sequence in context: A135091 A171150 A111589 * A010027 A151880 A108990
KEYWORD
nonn,tabl
AUTHOR
Wafa AlNadabi, Jul 04 2015
EXTENSIONS
More terms from Michel Marcus, Jul 15 2015
STATUS
approved