[go: up one dir, main page]

login
A171150
Triangle related to T(x,2x).
0
1, 1, 1, 2, 3, 1, 3, 9, 7, 1, 6, 20, 28, 15, 1, 10, 50, 85, 75, 31, 1, 20, 105, 255, 294, 186, 63, 1, 35, 245, 651, 1029, 903, 441, 127, 1, 70, 504, 1736, 3108, 3612, 2568, 1016, 255, 1, 126, 1134, 4116, 9324, 12636, 11556, 6921, 2295, 511, 1, 252, 2310, 10290, 25080, 42120, 46035, 34605, 17930, 5110, 1023, 1
OFFSET
0,4
COMMENTS
Let the triangle T_(x,y)=T defined by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1.
This triangle gives the coefficients of Sum_{k=0..n} T(n,k) where y=2x.
T_(0,0) = A053121, T_(1,2) = A039599, T_(2,4) = A124575.
First column of T_(x,2x) is given by A126222.
LINKS
M. Barnabei, F. Bonetti, and M. Silimbani, The Eulerian numbers on restricted centrosymmetric permutations, PU. M. A. Vol. 21 (2010), No. 2, pp. 99-118 (see Table p. 118, with additional zeros); see also, arXiv:0910.2376 [math.CO], 2009.
FORMULA
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001405(n), A000984(n), A133158(n) for x = -1, 0, 1, 2 respectively.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 1;
3, 9, 7, 1;
6, 20, 28, 15, 1;
10, 50, 85, 75, 31, 1;
...
CROSSREFS
Row sums give A000984.
Sequence in context: A152440 A134319 A135091 * A111589 A259760 A010027
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 04 2009
EXTENSIONS
More terms from Alois P. Heinz, Jan 31 2023
STATUS
approved