[go: up one dir, main page]

login
A258660
Numbers n such that the number of digits d in n is not prime and for each factor f of d the sum of the d/f digit groupings of size f is a square.
2
1, 4, 9, 1521, 3600, 7396, 8100, 103041, 120409, 160801, 11471769, 11655396, 12802084, 15210000, 22724289, 36000000, 42889401, 42928704, 45481536, 45968400, 46009089, 54567769, 61811044, 62236321, 70006689, 73925604, 73960000, 76965529, 79174404, 81000000, 85008400, 97693456, 97713225, 100000000
OFFSET
1,2
COMMENTS
If a(n) has m = p^k digits, then a(n)*10^((p-1)*m) is also a member of the sequence. For instance, 1521*10^(2^k-4) is in the sequence for all integers k >=2. # Chai Wah Wu, Jun 08 2015
FORMULA
a(n) = A153745(n)^2.
PROG
(Python)
from sympy import divisors
from gmpy2 import is_prime, isqrt, isqrt_rem, is_square
A258660_list = []
for l in range(1, 17):
....if not is_prime(l):
........fs = divisors(l)
........a, b = isqrt_rem(10**(l-1))
........if b > 0:
............a += 1
........for n in range(a, isqrt(10**l-1)+1):
............n2 = n**2
............ns = str(n2)
............for g in fs:
................y = 0
................for h in range(0, l, g):
....................y += int(ns[h:h+g])
................if not is_square(y):
....................break
............else:
................A258660_list.append(n2) # Chai Wah Wu, Jun 08 2015
CROSSREFS
Cf. A153745.
Sequence in context: A179935 A073172 A168139 * A260305 A229338 A111443
KEYWORD
base,nonn
AUTHOR
Doug Bell, Jun 06 2015
EXTENSIONS
Corrected a(13)-a(14) by Chai Wah Wu, Jun 08 2015
STATUS
approved