[go: up one dir, main page]

login
A257893
Pandigital numbers reordered so that the numbers A050278(n)/2^k, where 2^k||A050278(n), appear in nondecreasing order.
5
3076521984, 3718250496, 6398410752, 1384906752, 2769813504, 2845310976, 1578369024, 1074659328, 4761059328, 9805234176, 2507931648, 1294073856, 5619843072, 6591873024, 9073852416, 9574023168, 1208549376, 1249837056, 6103498752, 1542389760, 1683947520
OFFSET
1,1
COMMENTS
If two such numbers A050278(n_1)/2^k_1 and A050278(n_2)/2^k_2 are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2). For example, a(4)/2^18=a(5)/2^19=5283.
There are 184423 such pairs.
FORMULA
min(A050278(n)/2^k) = 3076521984/2^21 = 1467.
PROG
(Python)
from itertools import permutations
l = []
for d in permutations('0123456789', 10):
....if d[0] != '0':
........d2 = int(''.join(d))
........d = d2
........r = d2 % 2
........while not r:
............d2, r = divmod(d2, 2)
........l.append((d2, d))
l.sort()
A257893_list = [b for a, b in l] # Chai Wah Wu, May 24 2015
CROSSREFS
Cf. A050278.
Sequence in context: A225140 A203886 A257914 * A015397 A291600 A092380
KEYWORD
nonn,base,fini
AUTHOR
STATUS
approved