[go: up one dir, main page]

login
A257222
Numbers that have at least one divisor containing the digit 5 in base 10.
8
5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 65, 70, 75, 80, 85, 90, 95, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 118, 120, 125, 130, 135, 140, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 165
OFFSET
1,1
COMMENTS
Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 5.
Sequences of numbers k whose concatenation of divisors contains a digit j in base 10 for 0 <= j <= 9: A209932 for j = 0, A000027 for j = 1, A257219 for j = 2, A257220 for j = 3, A257221 for j = 4, A257222 for j = 5, A257223 for j = 6, A257224 for j = 7, A257225 for j = 8, A257226 for j = 9.
FORMULA
a(n) ~ n.
EXAMPLE
20 is in sequence because the list of divisors of 20: (1, 2, 4, 5, 10, 20) contains digit 5.
MATHEMATICA
Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 5] > 0 &]
Select[Range[200], Max[DigitCount[Divisors[#], 10, 5]]>0&] (* Harvey P. Dale, Sep 15 2018 *)
PROG
(Magma) [n: n in [1..1000] | [5] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))]
(PARI) is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 5), return(1))); 0
(Python)
from sympy import divisors
A257222_list = [n for n in range(1, 10**3) if '5' in set().union(*(set(str(d)) for d in divisors(n, generator=True)))] # Chai Wah Wu, May 06 2015
(Perl) use ntheory ":all"; for my $n (1..1000) { say $n if scalar(grep {/5/} divisors($n)) } # Dana Jacobsen, May 07 2015
(Perl) use ntheory ":all"; my @a257222 = grep { scalar(grep {/5/} divisors($_)) } 1..1000; # Dana Jacobsen, May 07 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, May 05 2015
EXTENSIONS
Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.
STATUS
approved