[go: up one dir, main page]

login
A254448
a(n) is the smallest nonnegative integer such that a(n)! contains a string of exactly n consecutive 3's.
11
0, 8, 24, 25, 134, 407, 151, 2936, 8040, 26808, 49668, 115189, 429335, 1365981, 3507499
OFFSET
0,2
EXAMPLE
a(1) = 8 since 8! = 40320, which contains '3' and 8 is the smallest integer for which the condition is met.
a(2) = 24 since 24! = 620448401733239439360000 contains '33'.
MATHEMATICA
A254448[n_] := Module[{m = 0},
If[n == 0, While[MemberQ[IntegerDigits[m!], 3], m++]; m,
t = Table[3, n];
While[! MemberQ[Split[IntegerDigits[m!]], t], m++]; m]];
Table[A254448[n], {n, 0, 14}] (* Robert Price, Mar 20 2019 *)
KEYWORD
nonn,base
AUTHOR
Martin Y. Champel, Jan 30 2015
EXTENSIONS
a(11), a(12) from Jon E. Schoenfield, Feb 20 2015, Feb 24 2015
a(0) prepended by Jon E. Schoenfield, Mar 01 2015
a(13) from Lars Blomberg, Mar 19 2015
a(14) from Bert Dobbelaere, Oct 29 2018
STATUS
approved