OFFSET
1,2
COMMENTS
Let r = (5 - sqrt(5))/2 and s = (5 + sqrt(5))/2. Then 1/r + 1/s = 1, so that A249115 and A003231 are a pair of complementary Beatty sequences. Let tau = (1 + sqrt(5))/2, the golden ratio. Let R = {h*tau, h >= 1} and S = {k*(tau - 1), k >= 1}. Then A249115(n) is the position of n*(tau - 1) in the ordered union of R and S.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..10000
Scott V. Tezlaf, On ordinal dynamics and the multiplicity of transfinite cardinality, arXiv:1806.00331 [math.NT], 2018. See p. 9.
MATHEMATICA
Table[Floor[(5 - Sqrt[5])/2*n], {n, 1, 200}]
PROG
(Magma) [Floor(n*(5-Sqrt(5))/2): n in [1..100]]; // Vincenzo Librandi, Oct 25 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 21 2014
STATUS
approved