[go: up one dir, main page]

login
A248669
Triangular array of coefficients of polynomials q(n,k) defined in Comments.
10
1, 2, 1, 5, 4, 1, 16, 17, 7, 1, 65, 84, 45, 11, 1, 326, 485, 309, 100, 16, 1, 1957, 3236, 2339, 909, 196, 22, 1, 13700, 24609, 19609, 8702, 2281, 350, 29, 1, 109601, 210572, 181481, 89225, 26950, 5081, 582, 37, 1, 986410, 2004749, 1843901, 984506, 331775
OFFSET
1,2
COMMENTS
q(n,x) = 1 + k+x + (k+x)(k-1+x) + (k+x)(k-1+x)(k-2+x) + ... + (k+x)(k-1+x)(k-2+x)...(1+x). The arrays at A248229 and A248664 have the same first column, given by A000522(n) for n >= 0. The alternating row sums of the array at A248669 are also given by A000522; viz., q(n,-1) = q(n-1,0) = A000522(n-2) for n >= 2. Column 2 of A248669 is given by A093344(n) for n >= 1.
LINKS
FORMULA
q(n,x) = (x + n - 1)*q(n-1,x) + 1, with q(1,x) = 1.
EXAMPLE
The first six polynomials:
p(1,x) = 1
p(2,x) = 2 + x
p(3,x) = 5 + 4 x + x^2
p(4,x) = 16 + 17 x + 7 x^2 + x^3
p(5,x) = 65 + 8 x + 45 x^2 + 11 x^3 + x^4
p(6,x) = 326 + 485 x + 309 x^2 + 100 x^3 + 16 x^4 + x^5
First six rows of the triangle:
1
2 1
5 4 1
16 17 7 1
65 84 45 11 1
326 485 309 100 16 1
MATHEMATICA
t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}];
q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
TableForm[Table[q[x, n], {n, 1, 6}]];
TableForm[Table[Factor[q[x, n]], {n, 1, 6}]];
c[n_] := c[n] = CoefficientList[q[x, n], x];
TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *)
Flatten[Table[c[n], {n, 1, 12}]] (* A248669 sequence *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Oct 11 2014
STATUS
approved