OFFSET
0,2
COMMENTS
This is the column k=3 sequence of the Riordan triangle A248156 without the leading three zeros.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-5,-10,-10,-5,-1).
FORMULA
O.g.f.: (1 - 2*x^2)/(1 + x)^5 = -2/(1 + x)^3 + 4/(1 + x)^4 - 1/(1 + x)^5.
a(n) = (-1)^n*(n+1)*(n+2)*(12 + 9*n - n^2)/4!.
a(n) = -5*(a(n-1) + a(n-4)) - 10*(a(n-2) + a(n-3)) - a(n-5), n >= 5, with a(0) =1, a(1) = -5, a(2) = 13, a(3) = -25 and a(4) = 40.
MAPLE
A248160:=n->(-1)^n*(n+1)*(n+2)*(12 + 9*n - n^2)/4!: seq(A248160(n), n=0..30); # Wesley Ivan Hurt, Oct 09 2014
MATHEMATICA
Table[(-1)^n*(n + 1)*(n + 2)*(12 + 9*n - n^2)/4!, {n, 0, 30}] (* Wesley Ivan Hurt, Oct 09 2014 *)
CoefficientList[Series[(1-2x^2)/(1+x)^5, {x, 0, 50}], x] (* or *) LinearRecurrence[ {-5, -10, -10, -5, -1}, {1, -5, 13, -25, 40}, 50] (* Harvey P. Dale, Apr 13 2019 *)
PROG
(PARI) Vec((1 - 2*x^2)/(1 + x)^5 + O(x^50)) \\ Michel Marcus, Oct 09 2014
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Oct 09 2014
STATUS
approved