[go: up one dir, main page]

login
A247834
Maximal non-semiprime number which is a "preprime" of the n-th kind (defined in comment in A247395).
3
8, 45, 125, 343, 325, 833, 1331, 1573, 2197, 2057, 3211, 3289, 4913, 4901, 6859, 6647, 8303, 10051, 10469, 11191, 12167, 15341, 16399, 17081, 18259, 22103, 24389, 26071, 29791, 27347, 31117, 35557, 36163, 36859, 39401, 42439, 50653, 50933, 52111, 56129, 56699
OFFSET
1,1
COMMENTS
Conjecture: the sequence contains all cubes of primes, except for 3^3 (cf. A030078).
Prime(n)^3 is in the sequence iff the interval [prime(n)^(3/2), prime(n)*sqrt(prime(n+1))] contains a prime.
A simple algorithm for finding the position k=k(n) for which a(k) = prime(n)^3 is given in A247835 (see formula and example there).
Conjecture: every term has the form a(n)= p*q*r, where p<=q<=r are primes.
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Sep 24 2014
EXTENSIONS
More terms from Peter J. C. Moses, Sep 24 2014
STATUS
approved