OFFSET
1,2
COMMENTS
Numbers of the form 1 + k/2 + k^2/3 (associated k are in A008588). - Bruno Berselli, Jan 20 2017
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 12*n^2 - 21*n + 10 (see A056105).
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 13*x + 10*x^2) / (1 - x)^3.
(End)
EXAMPLE
See A056105 example section for its diagram.
MAPLE
MATHEMATICA
f[n_] := 12 n^2 - 21 n + 10; Array[f, 47]
PROG
(PARI) vector(50, n, 12*n^2 - 21*n + 10) \\ Michel Marcus, Jul 06 2014
(PARI) Vec(x*(1 + 13*x + 10*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
(Magma) [12*n^2-21*n+10: n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Jul 06 2014
STATUS
approved