[go: up one dir, main page]

login
A244314
Nonnegative integers n such that Semigreedy Catalan representation A244159(n) contains at least one zero.
5
0, 2, 5, 6, 7, 14, 15, 16, 17, 18, 19, 20, 21, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157
OFFSET
0,2
COMMENTS
Starting offset is zero because A244159(0) = 0 is a borderline case (either one zero, or no zeros if leading zeros are discarded).
From a(1)=2 onward the positions of zeros in A244233.
After zero consists of successive subsequences containing terms from A000108(k) to (A000108(k)+A014138(k-2)-1) computed from k >= 2 onward, as: [2], [5,6,7], [14 .. 21], [42 .. 63], [132 .. 195], [429 .. 624], [1430 .. 2054], [4862 .. 6916], etc.
LINKS
FORMULA
a(0) = 0, a(1) = 2, and for n >= 2, a(n) = n + A000108(1+A244317(n)) - A014143(A244317(n)-2)) - 1.
PROG
(Scheme) (define (A244314 n) (cond ((zero? n) 0) ((= 1 n) 2) (else (+ -1 n (- (A000108 (+ 1 (A244317 n))) (A014143 (- (A244317 n) 2)))))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 25 2014
STATUS
approved