[go: up one dir, main page]

login
A244154
Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = A254049(a(n)), a(2n+1) = 3*a(n)-1; composition of A048673 and A005940.
21
1, 2, 3, 5, 4, 8, 13, 14, 6, 11, 18, 23, 25, 38, 63, 41, 7, 17, 28, 32, 39, 53, 88, 68, 61, 74, 123, 113, 172, 188, 313, 122, 9, 20, 33, 50, 46, 83, 138, 95, 72, 116, 193, 158, 270, 263, 438, 203, 85, 182, 303, 221, 424, 368, 613, 338, 666, 515, 858, 563, 1201, 938, 1563, 365, 10, 26, 43, 59, 60
OFFSET
0,2
COMMENTS
Note the indexing: the domain starts from 0, while the range excludes zero.
From Antti Karttunen, May 30 2017: (Start)
This sequence can be represented as a binary tree. Each left hand child is obtained by applying A254049(n) when the parent contains n, and each right hand child is obtained by applying A016789(n-1) (i.e., multiply by 3, subtract one) to the parent's contents:
1
|
...................2...................
3 5
4......../ \........8 13......../ \........14
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
6 11 18 23 25 38 63 41
7 17 28 32 39 53 88 68 61 74 123 113 172 188 313 122
etc.
This is a mirror image of the tree depicted in A245612.
(End)
FORMULA
a(n) = A048673(A005940(n+1)).
From Antti Karttunen, May 30 2017: (Start)
a(0) = 1, a(1) = 2, a(2n) = A254049(a(n)), a(2n+1) = 3*a(n)-1.
a(n) = A245612(A054429(n)).
(End)
PROG
(Scheme)
(define (A244154 n) (A048673 (A005940 (+ 1 n))))
;; Implementing a new recurrence, with memoization-macro definec:
(definec (A244154 n) (cond ((<= n 1) (+ 1 n)) ((even? n) (A254049 (A244154 (/ n 2)))) (else (+ -1 (* 3 (A244154 (/ (- n 1) 2))))))) ;; Antti Karttunen, May 30 2017
KEYWORD
nonn,tabf
AUTHOR
Antti Karttunen, Jun 27 2014
STATUS
approved