OFFSET
0,3
COMMENTS
Chebyshev polynomial of the first kind T(7,n).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
FORMULA
G.f.: (x + 5034*x^2 + 73935*x^3 + 164620*x^4 + 73935*x^5 + 5034*x^6 + x^7)/(1 - x)^8.
a(n) = n*(64*n^6 - 112*n^4 + 56*n^2 - 7).
a(0)=0, a(1)=1, a(2)=5042, a(3)=114243, a(4)=937444, a(5)=4656965, a(6)=17057046, a(7)=50843527, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)- 70*a(n-4)+ 56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8). - Harvey P. Dale, Mar 27 2015
MATHEMATICA
Table[ChebyshevT[7, n], {n, 0, 40}] (* or *) Table[64 n^7 - 112 n^5 + 56 n^3 - 7 n, {n, 0, 40}]
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 1, 5042, 114243, 937444, 4656965, 17057046, 50843527}, 40] (* Harvey P. Dale, Mar 27 2015 *)
PROG
(Magma) [64*n^7-112*n^5+56*n^3-7*n: n in [0..40]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 31 2014
STATUS
approved