[go: up one dir, main page]

login
a(n+1) is the smallest prime > a(n) such that the digits of a(n) are all (with multiplicity) contained in the digits of a(n+1), with a(1)=2.
3

%I #7 May 26 2014 10:35:11

%S 2,23,223,1223,2213,3221,10223,12203,20123,20231,21023,22013,22031,

%T 23021,23201,102023,102203,200231,201203,202031,220013,220301,300221,

%U 322001,1002263,1002623,1060223,1062203,1202063,1202603,1600223,2002361,2002613,2003621

%N a(n+1) is the smallest prime > a(n) such that the digits of a(n) are all (with multiplicity) contained in the digits of a(n+1), with a(1)=2.

%p with(numtheory):lst:={2}:nn:=150000:x0:=convert(2,base,10):n0:=nops(x0):

%p for n from 2 to nn do:

%p p:=ithprime(n):x:=convert(p,base,10):

%p x1:=x:n1:=nops(x):c:=0:

%p for i from 1 to n0 do:

%p ii:=0:

%p for j from 1 to n1 while(ii=0)do:

%p if x0[i]=x[j]

%p then

%p c:=c+1:x[j]:=99:ii:=1:

%p else

%p fi:

%p od:

%p od:

%p if c=n0

%p then

%p lst:=lst union {p}:n0:=n1:x0:=x1:

%p else

%p fi:

%p od:

%p print(lst):

%Y Cf. A068167, A242905, A242906, A242907.

%K nonn,base

%O 1,1

%A _Michel Lagneau_, May 26 2014