[go: up one dir, main page]

login
A242904
a(n+1) is the smallest prime > a(n) such that the digits of a(n) are all (with multiplicity) contained in the digits of a(n+1), with a(1)=2.
3
2, 23, 223, 1223, 2213, 3221, 10223, 12203, 20123, 20231, 21023, 22013, 22031, 23021, 23201, 102023, 102203, 200231, 201203, 202031, 220013, 220301, 300221, 322001, 1002263, 1002623, 1060223, 1062203, 1202063, 1202603, 1600223, 2002361, 2002613, 2003621
OFFSET
1,1
MAPLE
with(numtheory):lst:={2}:nn:=150000:x0:=convert(2, base, 10):n0:=nops(x0):
for n from 2 to nn do:
p:=ithprime(n):x:=convert(p, base, 10):
x1:=x:n1:=nops(x):c:=0:
for i from 1 to n0 do:
ii:=0:
for j from 1 to n1 while(ii=0)do:
if x0[i]=x[j]
then
c:=c+1:x[j]:=99:ii:=1:
else
fi:
od:
od:
if c=n0
then
lst:=lst union {p}:n0:=n1:x0:=x1:
else
fi:
od:
print(lst):
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, May 26 2014
STATUS
approved