[go: up one dir, main page]

login
A241832
Number of partitions p = [x(1), ..., x(k)], where x(1) >= x(2) >= ... >= x(k), of n such that max(x(i) - x(i-1)) > number of parts of p.
8
0, 0, 0, 0, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 27, 37, 46, 63, 76, 101, 124, 160, 196, 250, 302, 382, 463, 574, 693, 855, 1026, 1255, 1503, 1823, 2178, 2626, 3123, 3749, 4447, 5305, 6274, 7458, 8790, 10405, 12231, 14422, 16909, 19871, 23229, 27217, 31742
OFFSET
0,8
FORMULA
a(n) = A241831(n) - A241830(n).
a(n) + A241828(n) + A241830(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts this single partition: 51.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; g[p_] := Max[-Differences[p]]
Table[Count[f[n], p_ /; g[p] < Length[p]], {n, 0, z}] (* A241828 *)
Table[Count[f[n], p_ /; g[p] <= Length[p]], {n, 0, z}] (* A241829 *)
Table[Count[f[n], p_ /; g[p] == Length[p]], {n, 0, z}] (* A241830 *)
Table[Count[f[n], p_ /; g[p] >= Length[p]], {n, 0, z}] (* A241831 *)
Table[Count[f[n], p_ /; g[p] > Length[p]], {n, 0, z}] (* A241832 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 30 2014
STATUS
approved