[go: up one dir, main page]

login
A240175
Number of partitions of n such that the least part is less than its multiplicity.
3
0, 0, 1, 1, 2, 3, 6, 7, 12, 16, 24, 32, 47, 60, 84, 110, 148, 191, 254, 323, 423, 535, 687, 864, 1100, 1371, 1726, 2141, 2669, 3290, 4075, 4990, 6136, 7481, 9137, 11087, 13471, 16264, 19659, 23641, 28438, 34060, 40801, 48676, 58074, 69049, 82064, 97246
OFFSET
0,5
FORMULA
a(n) = A188216(n) - A096403(n), for n >= 0.
EXAMPLE
a(8) counts these 12 partitions: 611, 5111, 4211, 41111, 3311, 32111, 311111, 2222, 22211, 221111, 2111111, 11111111.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; Min[p] < Count[p, Min[p]]], {n, 0, z}](* A240175 *)
Table[Count[f[n], p_ /; Min[p] <= Count[p, Min[p]]], {n, 0, z}](* A188216 *)
Table[Count[f[n], p_ /; Min[p] == Count[p, Min[p]]], {n, 0, z}](* A096403 *)
Table[Count[f[n], p_ /; Min[p] > Count[p, Min[p]]], {n, 0, z}] (* A240176 *)
Table[Count[f[n], p_ /; Min[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240177 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 02 2014
STATUS
approved