[go: up one dir, main page]

login
A239062
Number of integers x, 1 <= x <= n, such that x^x == 0 (mod n).
3
1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 7, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 1, 1, 15, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 31, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 5, 2, 1, 1, 1, 8, 26, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7, 3, 10, 1, 1, 1, 4, 1
OFFSET
1,4
LINKS
EXAMPLE
From Michael De Vlieger, Sep 23 2017: (Start)
Table of records a(n) and first positions n:
i n a(n)
-------------------
1 1 1
2 4 2
3 8 3
4 16 7
5 27 9
6 32 15
7 64 31
8 128 62
9 243 80
10 256 126
11 512 253
12 1024 509
13 2048 1020
14 4096 2044
15 6561 2185
16 8192 4092
17 16384 8188
(End)
MATHEMATICA
gg0[n_] := Sum[If[Mod[x^x , n] == 0, 1, 0], {x, n}]; Array[gg0, 200]
(* or *)
Array[Sum[Boole[PowerMod[x, x, #] == 0], {x, #}] &, 10^4] (* or *)
Table[Count[Range@ n, k_ /; PowerMod[k, k, n] == 0], {n, 200}] (* Michael De Vlieger, Sep 23 2017 *)
PROG
(PARI) A239062(n) = sum(x=1, n, if(0 == Mod(x^x, n), 1, 0)); \\ Antti Karttunen, Sep 23 2017, after the Mathematica-program.
CROSSREFS
Cf. A239061, A239063, A005117 (indices of 1's).
Sequence in context: A152798 A079115 A072906 * A341052 A201160 A302538
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Antti Karttunen, Sep 23 2017
STATUS
approved