[go: up one dir, main page]

login
A229556
Array read by antidiagonals. Rows are the numerators of consecutive harmonic transforms starting with a first row 1, 1, 1, ....
3
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 11, 5, 1, 1, 5, 25, 73, 8, 1, 1, 6, 137, 2221, 749, 13, 1, 1, 7, 49, 353777, 1964654, 12657, 21, 1, 1, 8, 363, 19595573, 786674809783, 14862065179, 343693, 34, 1, 1, 9, 761, 239046803, 17003676861538314284, 13379715149864207035877, 35955580499839
OFFSET
1,5
COMMENTS
The "harmonic transform" of a sequence of positive numbers a(i) is the sequence h(n) of the partial sums of their reciprocals: h(n) = Sum_{i=1..n} 1/a(i).
EXAMPLE
Table begins
1, 1, 1, 1, ...
1, 2, 3, 4, ...
1, 3, 11, 25, ...
1, 5, 73, 2221, ...
1, 8, 749, 1964654, ...
which are the numerators of
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
1, 3/2, 11/6, 25/12, 137/60, ...
1, 5/3, 73/33, 2221/825, 353777/113025, ...
1, 8/5, 749/365, 1964654/810665, 786674809783/286794631705, ...
MAPLE
A229556A := proc(n, k)
option remember;
if n = 1 then
1;
else
add( 1/procname(n-1, c), c=1..k) ;
end if;
end proc:
A229556 := proc(n, k)
numer(A229556A(n, k)) ;
end proc:
for d from 2 to 12 do
for k from d-1 to 1 by -1 do
printf("%d, ", A229556(d-k, k)) ;
end do:
end do:
CROSSREFS
Cf. A229557 (denominators).
Rows 1-4 are A000012(n), A000027(n), A001008(n), A096987(n+1).
Columns 1-2 are A000012(n), A000045(n+2).
Column 3 gives A350834.
Sequence in context: A209631 A309876 A059922 * A159623 A143199 A137896
KEYWORD
nonn,tabl,frac
AUTHOR
Franz Vrabec, Sep 26 2013
STATUS
approved