[go: up one dir, main page]

login
A228015
Smallest integer m > n such that phi(m+n) = sigma(m-n).
1
4, 7, 22, 11, 16, 29, 26, 31, 56, 16, 17, 27, 56, 24, 21, 49, 62, 24, 33, 71, 35, 32, 35, 51, 94, 48, 49, 42, 43, 56, 86, 46, 53, 121, 49, 62, 176, 52, 59, 95, 106, 80, 65, 72, 332, 68, 214, 111, 73, 74, 97, 74, 99, 111, 232, 181, 470, 88, 89, 275, 91, 2019, 132, 98, 89, 128, 212, 114, 156, 257
OFFSET
1,1
COMMENTS
It seems that for all n, a(n)/n <= 2019/62. [Farideh Firoozbakht, Aug 22 2014]
LINKS
EXAMPLE
For n=1 and m = 2 and 3 phi(m+1) != sigma(m-1), but for m=4 phi(m+1) = sigma(m-1). Thus a(1) = 4.
MAPLE
with(numtheory):
a:= proc(n) local m;
for m from n+1 while phi(m+n)<>sigma(m-n) do od; m
end:
seq(a(n), n=1..80); # Alois P. Heinz, Aug 05 2013
MATHEMATICA
a[m_]:=(For[n=m+1, DivisorSigma[1, n-m]!=EulerPhi[n+m], n++]; n); Table[a[n], {n, 70}]
CROSSREFS
Sequence in context: A186335 A010363 A119561 * A145931 A026548 A100098
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht, Aug 02 2013
STATUS
approved