[go: up one dir, main page]

login
A226327
Sum of digits of n equals sum of digits of its antisigma (A024816).
1
24, 46, 69, 78, 145, 147, 169, 177, 186, 198, 451, 459, 460, 474, 478, 495, 568, 586, 588, 618, 639, 667, 685, 738, 801, 838, 864, 865, 987, 1194, 1198, 1485, 1486, 1495, 1558, 1566, 1639, 1698, 1738, 1878, 1954, 1959, 2295, 2458, 2494, 2538, 2584, 2655, 2656
OFFSET
1,1
LINKS
EXAMPLE
For 2584 we have antisigma(2584) = 2584*(2584 + 1)/2 - sigma(2584) = 3334420 and 2 + 5 + 8 + 4 = 3 + 3 + 3 + 4 + 4 + 2 + 0 = 19.
MAPLE
with(numtheory); SA:=proc(t) global v, z; v:=0; z:=t;
while z>0 do v:=v+(z mod 10); z:=trunc(z/10); od; v; end:
A226327:=proc(q) local n; for n from 1 to q do
if SA(n)=SA(n*(n+1)/2-sigma(n)) then print(n);
fi; od; end: A226327(10^4);
CROSSREFS
Sequence in context: A324457 A357876 A217080 * A063323 A154590 A028992
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jun 04 2013
STATUS
approved