OFFSET
1,2
COMMENTS
The prime numbers are the only solutions to mu(n)*d(n) = -2.
Multiplicative with a(p) = -2, a(p^e) = 0, e > 1.
Möbius transform of (-1)^omega(n). - Wesley Ivan Hurt, Jun 22 2024
LINKS
FORMULA
Sum_{n>0} a(n)/n^s = Product_{p prime} (1 - 2p^(-s)). - Ralf Stephan, Jul 07 2013
a(n) = mu(n) * 2^omega(n) = |mu(n)| * (-2)^omega(n), where omega = A001221. - Álvar Ibeas, Dec 30 2018
a(n) = Sum_{d|n} (-1)^omega(d) * mu(n/d). - Wesley Ivan Hurt, Jun 22 2024
EXAMPLE
a(5) = mu(5)*d(5) = (-1)(2) = -2.
MAPLE
with(numtheory); a:=n->mobius(n)*tau(n); seq(a(k), k=1..100);
MATHEMATICA
Table[MoebiusMu[n] DivisorSigma[0, n], {n, 105}] (* Michael De Vlieger, Jul 23 2017 *)
PROG
(PARI) A226177(n) = moebius(n)*numdiv(n); \\ Antti Karttunen, Jul 23 2017
(Scheme) (define (A226177 n) (if (= 1 n) n (* (if (= 1 (A067029 n)) -2 0) (A226177 (A028234 n))))) ;; Antti Karttunen, Jul 23 2017
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X))[n], ", ")); \\ Vaclav Kotesovec, Aug 21 2021
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Wesley Ivan Hurt, May 29 2013
EXTENSIONS
More terms from Antti Karttunen, Jul 23 2017
Name changed by David A. Corneth, Jul 23 2017
STATUS
approved