[go: up one dir, main page]

login
A226177
a(n) = mu(n)*d(n), where mu(n) = A008683 and d(n) = A000005.
6
1, -2, -2, 0, -2, 4, -2, 0, 0, 4, -2, 0, -2, 4, 4, 0, -2, 0, -2, 0, 4, 4, -2, 0, 0, 4, 0, 0, -2, -8, -2, 0, 4, 4, 4, 0, -2, 4, 4, 0, -2, -8, -2, 0, 0, 4, -2, 0, 0, 0, 4, 0, -2, 0, 4, 0, 4, 4, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 4, -8, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 0, 4, -2, 0, 4, 4, 4, 0, -2, 0, 4, 0, 4, 4, 4, 0, -2, 0, 0, 0, -2, -8, -2, 0, -8
OFFSET
1,2
COMMENTS
The prime numbers are the only solutions to mu(n)*d(n) = -2.
Multiplicative with a(p) = -2, a(p^e) = 0, e > 1.
The Moebius inverse is A076479, and the Dirichlet inverse A061142. - R. J. Mathar, Jun 03 2013
Möbius transform of (-1)^omega(n). - Wesley Ivan Hurt, Jun 22 2024
FORMULA
a(n) = mu(n)*d(n) = A008683(n)*A000005(n).
Sum_{n>0} a(n)/n^s = Product_{p prime} (1 - 2p^(-s)). - Ralf Stephan, Jul 07 2013
a(n) = mu(n) * 2^omega(n) = |mu(n)| * (-2)^omega(n), where omega = A001221. - Álvar Ibeas, Dec 30 2018
a(n) = Sum_{d|n} (-1)^omega(d) * mu(n/d). - Wesley Ivan Hurt, Jun 22 2024
EXAMPLE
a(5) = mu(5)*d(5) = (-1)(2) = -2.
MAPLE
with(numtheory); a:=n->mobius(n)*tau(n); seq(a(k), k=1..100);
MATHEMATICA
Table[MoebiusMu[n] DivisorSigma[0, n], {n, 105}] (* Michael De Vlieger, Jul 23 2017 *)
PROG
(PARI) A226177(n) = moebius(n)*numdiv(n); \\ Antti Karttunen, Jul 23 2017
(Scheme) (define (A226177 n) (if (= 1 n) n (* (if (= 1 (A067029 n)) -2 0) (A226177 (A028234 n))))) ;; Antti Karttunen, Jul 23 2017
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X))[n], ", ")); \\ Vaclav Kotesovec, Aug 21 2021
CROSSREFS
Cf. A000005, A000040, A001358, A008683, A074823 (absolute values), A001221.
Sequence in context: A350272 A171933 A074823 * A159916 A159286 A355837
KEYWORD
sign,mult
AUTHOR
Wesley Ivan Hurt, May 29 2013
EXTENSIONS
More terms from Antti Karttunen, Jul 23 2017
Name changed by David A. Corneth, Jul 23 2017
STATUS
approved