[go: up one dir, main page]

login
A225482
Expansion of 1/(1 - x^3 - x^4 - x^5 + x^8).
27
1, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 4, 6, 8, 10, 12, 16, 21, 26, 34, 43, 55, 71, 91, 116, 148, 191, 244, 312, 400, 512, 656, 840, 1076, 1377, 1764, 2260, 2893, 3705, 4745, 6077, 7782, 9966, 12763, 16344, 20932, 26806, 34328, 43962, 56300, 72100, 92333, 118246
OFFSET
0,8
COMMENTS
Limiting ratio is 1.28064..., the largest real root of 1 - x^3 - x^4 - x^5 + x^8: 1.280638156267757596701902532710 is a candidate for the smallest degree-8 Salem number.
LINKS
FORMULA
a(n) = a(n-3) + a(n-4) + a(n-5) - a(n-8). - Franck Maminirina Ramaharo, Nov 02 2018
MATHEMATICA
CoefficientList[Series[1/(1 - x^3 - x^4 - x^5 + x^8), {x, 0, 50}], x]
LinearRecurrence[{0, 0, 1, 1, 1, 0, 0, -1}, {1, 0, 0, 1, 1, 1, 1, 2}, 100] (* G. C. Greubel, Nov 16 2016 *)
PROG
(PARI) Vec(1/(1-x^3-x^4-x^5+x^8)+O(x^99)) \\ Charles R Greathouse IV, May 08 2013
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^3-x^4-x^5+x^8))); // G. C. Greubel, Nov 03 2018
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, May 08 2013
EXTENSIONS
More terms from Franck Maminirina Ramaharo, Nov 02 2018
STATUS
approved