[go: up one dir, main page]

login
A143619
Expansion of 1/(1 - x^2 - x^7 - x^12 + x^14) (a Salem polynomial).
23
1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 5, 5, 6, 8, 9, 12, 13, 17, 19, 24, 28, 34, 41, 49, 59, 71, 86, 103, 124, 149, 179, 215, 259, 311, 375, 450, 542, 651, 784, 942, 1133, 1363, 1638, 1971, 2369, 2851, 3427, 4123, 4957, 5962, 7170, 8622, 10370, 12470, 14998, 18035, 21691, 26085, 31371
OFFSET
0,10
COMMENTS
Low growth rate of 1.20262... .The absolute values of the roots of the polynomial are 0.8315201041..., 1.2026167436..., and 1.0 (with multiplicity 12). The polynomial is self-reciprocal. - Joerg Arndt, Nov 03 2012
LINKS
FORMULA
G.f.: 1/(1 - x^2 - x^7 - x^12 + x^14). - Colin Barker, Nov 03 2012
a(n) = a(n-2) + a(n-7) + a(n-12) - a(n-14). - Franck Maminirina Ramaharo, Nov 02 2018
MATHEMATICA
CoefficientList[Series[1/(1 - x^2 - x^7 - x^12 + x^14), {x, 0, 50}], x]
LinearRecurrence[{0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, -1}, {1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4}, 70] (* Harvey P. Dale, Aug 08 2022 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1-x^2-x^7-x^12+x^14)) \\ G. C. Greubel, Nov 03 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 -x^2-x^7-x^12+x^14))); // G. C. Greubel, Nov 03 2018
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
New name from Colin Barker and Joerg Arndt, Nov 03 2012
STATUS
approved