[go: up one dir, main page]

login
A225043
Pascal's triangle with row n reduced modulo n+1.
3
0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 1, 4, 1, 1, 5, 4, 4, 5, 1, 1, 6, 1, 6, 1, 6, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 8, 1, 2, 7, 2, 1, 8, 1, 1, 9, 6, 4, 6, 6, 4, 6, 9, 1, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 1, 11, 7, 9, 6, 6, 6, 6, 9, 7, 11, 1, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1
OFFSET
0,5
COMMENTS
The row sums are: {0, 2, 4, 8, 11, 20, 22, 32, 31, 52, 56, ...}.
Since row n is only defined mod n+1, it would seem better to reduce the row sums mod n+1, which gives A062173. - N. J. A. Sloane, Apr 28 2013
FORMULA
T(m,n) = binomial(m, n) mod m+1.
EXAMPLE
{0},
{1, 1},
{1, 2, 1},
{1, 3, 3, 1},
{1, 4, 1, 4, 1},
{1, 5, 4, 4, 5, 1},
{1, 6, 1, 6, 1, 6, 1},
{1, 7, 5, 3, 3, 5, 7, 1},
{1, 8, 1, 2, 7, 2, 1, 8, 1},
{1, 9, 6, 4, 6, 6, 4, 6, 9, 1},
{1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1},
{1, 11, 7, 9, 6, 6, 6, 6, 9, 7, 11, 1},
{1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1},...
MATHEMATICA
Flatten[Table[Mod[Binomial[m, n], m + 1], {m, 0, 12}, {n, 0, m}]]
PROG
(PARI) T(m, n)=binomial(m, n)%(m+1) \\ Charles R Greathouse IV, Apr 25 2013
(Haskell)
a225043 n k = a225043_tabl !! n !! k
a225043_row n = a225043_tabl !! n
a225043_tabl = zipWith (map . flip mod) [1..] a007318_tabl
-- Reinhard Zumkeller, Jun 12 2013
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 25 2013
EXTENSIONS
Definition edited by N. J. A. Sloane, Apr 28 2013
STATUS
approved