[go: up one dir, main page]

login
A095140
Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 5.
12
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 1, 4, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 3, 3, 1, 0, 1, 3, 3, 1, 1, 4, 1, 4, 1, 1, 4, 1, 4, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 2, 4, 2, 0, 0, 1, 2, 1, 1, 3, 3, 1, 0, 2, 1, 1, 2, 0, 1, 3, 3, 1
OFFSET
0,5
COMMENTS
{T(n,k)} is a fractal gasket with fractal (Hausdorff) dimension log(A000217(5))/log(5) = log(15)/log(5) = 1.68260... (see Reiter reference). Replacing values greater than 1 with 1 produces a binary gasket with the same dimension (see Bondarenko reference). - Richard L. Ollerton, Dec 14 2021
REFERENCES
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, Santa Clara, Calif.: The Fibonacci Association, 1993, pp. 130-132.
FORMULA
T(i, j) = binomial(i, j) mod 5.
MATHEMATICA
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 5]
CROSSREFS
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), (this sequence) (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A370399 A095141 A177974 * A225043 A125605 A110570
KEYWORD
easy,nonn,tabl
AUTHOR
Robert G. Wilson v, May 29 2004
STATUS
approved