[go: up one dir, main page]

login
A223774
Number of n X 5 0..1 arrays with rows and columns unimodal and antidiagonals nondecreasing.
1
16, 101, 371, 1040, 2516, 5573, 11635, 23230, 44703, 83305, 150815, 265901, 457485, 769447, 1267085, 2045843, 3242928, 5052561, 7745747, 11695606, 17409482, 25569241, 37081383, 53138828, 75296493, 105563057, 146511615, 201412251
OFFSET
1,1
COMMENTS
Column 5 of A223777.
LINKS
FORMULA
Empirical: a(n) = (1/3628800)*n^10 + (1/241920)*n^9 + (1/8640)*n^8 + (11/8064)*n^7 + (4273/172800)*n^6 + (589/11520)*n^5 + (649763/362880)*n^4 + (589/12096)*n^3 + (102443/2400)*n^2 - (16061/168)*n + 93 for n>2.
Conjectures from Colin Barker, Aug 23 2018: (Start)
G.f.: x*(16 - 75*x + 140*x^2 - 126*x^3 + 96*x^4 - 180*x^5 + 272*x^6 - 200*x^7 + 65*x^8 - 20*x^9 + 27*x^10 - 18*x^11 + 4*x^12) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>13.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..0..0..0....1..0..0..0..0....1..0..0..0..0....0..0..0..0..0
..1..0..0..0..0....1..0..0..0..0....0..0..0..0..1....0..0..0..0..0
..0..0..0..0..1....0..0..1..1..1....0..0..0..1..0....0..0..1..1..0
CROSSREFS
Cf. A223777.
Sequence in context: A376705 A115328 A223767 * A224155 A224406 A223016
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 27 2013
STATUS
approved