[go: up one dir, main page]

login
A223772
Number of n X 3 0..1 arrays with rows and columns unimodal and antidiagonals nondecreasing.
1
7, 28, 78, 180, 371, 707, 1269, 2170, 3563, 5650, 8692, 13020, 19047, 27281, 38339, 52962, 72031, 96584, 127834, 167188, 216267, 276927, 351281, 441722, 550947, 681982, 838208, 1023388, 1241695, 1497741, 1796607, 2143874, 2545655, 3008628
OFFSET
1,1
COMMENTS
Column 3 of A223777.
LINKS
FORMULA
Empirical: a(n) = (1/720)*n^6 + (1/80)*n^5 + (29/144)*n^4 + (25/48)*n^3 + (1727/360)*n^2 - (8/15)*n + 2.
Conjectures from Colin Barker, Aug 23 2018: (Start)
G.f.: x*(7 - 21*x + 29*x^2 - 23*x^3 + 14*x^4 - 7*x^5 + 2*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=3:
..0..1..1....1..0..0....1..1..1....1..0..0....1..0..0....0..0..0....0..1..0
..1..1..0....1..0..0....1..1..1....1..0..0....1..0..0....0..1..0....1..1..0
..1..0..0....0..0..0....1..1..1....1..1..0....1..1..1....1..1..1....1..0..0
CROSSREFS
Cf. A223777.
Sequence in context: A341986 A341067 A061968 * A024012 A352900 A163705
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 27 2013
STATUS
approved