[go: up one dir, main page]

login
A223607
Numbers n whose deficiency is 20: sigma(n) - 2*n = -20.
7
46, 154, 190, 2656, 6490, 44650, 318250, 1360810, 1503370, 1788490, 3214090, 103712410, 3915380170, 6077111050, 9796360330, 10828121356, 33086522327050, 35966517350410, 11577093570201610, 16726040141635450, 576460762503970816
OFFSET
1,1
COMMENTS
a(17) > 10^12.
a(17) > 10^13. - Giovanni Resta, Mar 29 2013
a(22) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
Any term x of this sequence can be combined with any term y of A223611 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
EXAMPLE
n = 1360810. sigma(n)-2*n = -20.
MATHEMATICA
Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == - 20 &] (* Vincenzo Librandi, Sep 14 2016 *)
PROG
(PARI) for(n=1, 10^8, if(sigma(n)-2*n==-20, print1(n ", ")))
(Magma) [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -20]; // Vincenzo Librandi, Sep 14 2016
CROSSREFS
Cf. A000203, A033879, A223611 (abundance 20).
Sequence in context: A053019 A044378 A044759 * A189809 A350556 A251467
KEYWORD
nonn,more
AUTHOR
Donovan Johnson, Mar 23 2013
EXTENSIONS
a(17)-a(21) from Hiroaki Yamanouchi, Aug 21 2018
STATUS
approved