[go: up one dir, main page]

login
A223577
Positive integers n for which there is exactly one negative integer m such that -n = floor(cot(Pi/(2*m))).
2
1, 2, 3, 5, 8, 10, 12, 15, 17, 19, 22, 24, 26, 29, 31, 33, 35, 38, 40, 42, 45, 47, 49, 52, 54, 56, 59, 61, 63, 66, 68, 70, 73, 75, 77, 80, 82, 84, 87, 89, 91, 94, 96, 98, 101, 103, 105, 108, 110, 112, 115, 117, 119, 122, 124, 126, 129, 131, 133, 136, 138
OFFSET
1,2
COMMENTS
Conjecture: A223577(k) = (A223578(k) + k - 1)/2, k=1,2,....
FORMULA
a(k) = floor(cot(Pi/(2*A223578(k)))).
Conjectures from Colin Barker, Jan 03 2014: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 6.
G.f.: x*(x^17 - x^16 + x^5 + 2*x^4 + x^3 + x^2 + x + 1) / ((x-1)^2*(x^2 + x + 1)). (End)
MATHEMATICA
f[n_] := Floor[Cot[Pi/(2 n)]]; Transpose[Select[Tally[Table[-f[-n], {n, 2, 300}]], #[[2]] == 1 &]][[1]] (* T. D. Noe, Mar 22 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
L. Edson Jeffery, Mar 22 2013
STATUS
approved