[go: up one dir, main page]

login
A221954
a(n) = 3^(n-1) * n! * Catalan(n-1).
9
1, 6, 108, 3240, 136080, 7348320, 484989120, 37829151360, 3404623622400, 347271609484800, 39588963481267200, 4988209398639667200, 688372897012274073600, 103255934551841111040000, 16727461397398259988480000, 2910578283147297237995520000, 541367560665397286267166720000, 107190777011748662680899010560000, 22510063172467219162988792217600000
OFFSET
1,2
COMMENTS
a(n+1) is the number of square roots of any permutation in S_{12*n} whose disjoint cycle decomposition consists of 2*n cycles of length 6. - Luis Manuel Rivera Martínez, Feb 26 2015
LINKS
W. van der Aalst, J. Buijs and B. van Dongen, Towards Improving the Representational Bias of Process Mining, 2012.
Jesús Leaños, Rutilo Moreno and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, arXiv:1005.1531 [math.CO], 2010-2011.
Jesús Leaños, Rutilo Moreno and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, Australas. J. Combin., Vol. 52 (2012), pp. 41-54 (Theorem 1).
FORMULA
a(n) = 6*(2*n-3)*a(n-1) with a(1)=1. - Bruno Berselli, Mar 11 2013
E.g.f.: (1 - sqrt(1-12*x))/6. - Luis Manuel Rivera Martínez, Mar 04 2015
a(n) = 12^(n-1) * Gamma(n - 1/2) / sqrt(Pi). - Daniel Suteu, Jan 06 2017
a(1) = 1; a(n) = 3 * Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Jul 09 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 + e^(1/12)*sqrt(Pi)*erf(1/(2*sqrt(3)))/(2*sqrt(3)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - e^(-1/12)*sqrt(Pi)*erfi(1/(2*sqrt(3)))/(2*sqrt(3)), where erfi is the imaginary error function. (End)
MAPLE
A221954:= n-> (3^(n-1)*n!/(2*(2*n-1))*binomial(2*n, n); seq(A221954(n), n=1..30); # G. C. Greubel, Apr 02 2021
MATHEMATICA
Table[CatalanNumber[n-1] 3^(n-1) n!, {n, 20}] (* Vincenzo Librandi, Mar 11 2013 *)
PROG
(Magma) [Catalan(n-1)*3^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
(PARI) my(x='x+O('x^22)); Vec(serlaplace((1-sqrt(1-12*x))/6)) \\ Michel Marcus, Mar 04 2015
(Sage) [3^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021
CROSSREFS
Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or A144828) (m=2), this sequence (m=3), A052734 (m=4), A221953 (m=5), A221955 (m=6).
Cf. A000108.
Sequence in context: A288148 A010563 A114310 * A167484 A011555 A122722
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 03 2013
STATUS
approved