OFFSET
0,2
COMMENTS
Diagonal of rational function 1/(1 + y + z + x*y + y*z + 5*x*z + 6*x*y*z). - Gheorghe Coserea, Jul 01 2018
Diagonal of rational function 1 / ((1-x)*(1-y)*(1-z) - 5*x*y*z). - Seiichi Manyama, Jul 11 2020
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Vaclav Kotesovec, Asymptotic of a sums of powers of binomial coefficients * x^k, 2012.
FORMULA
Recurrence: (n+3)^2*(3*n+4)*a(n+3) = 6*(9*n^3+57*n^2+116*n+74)*a(n+2) + 3*(27*n^3+144*n^2+261*n+160)*a(n+1) + 216*(3*n+7)*(n+1)^2*a(n).
Asymptotic: a(n) ~ (1+5^(1/3))^2/(2*sqrt(3)*5^(1/3)*Pi) * (3*5^(2/3)+3*5^(1/3)+6)^n/n. - Vaclav Kotesovec, Sep 19 2012
G.f.: hypergeom([1/3, 2/3],[1],5*27*x^2/(1-6*x)^3)/(1-6*x). - Mark van Hoeij, May 02 2013
a(n) = hypergeom([-n,-n,-n],[1,1], -5). - Peter Luschny, Sep 23 2014
G.f. y=A(x) satisfies: x*(3*x + 1)*(216*x^3 + 27*x^2 + 18*x - 1)*y'' + (1944*x^4 + 1026*x^3 + 135*x^2 + 36*x - 1)*y' + 6*(108*x^3 + 69*x^2 + 2*x + 1)*y. - Gheorghe Coserea, Jul 01 2018
MATHEMATICA
Table[Sum[Binomial[n, k]^3*5^k, {k, 0, n}], {n, 0, 20}]
PROG
(Sage)
A216636 = lambda n: hypergeometric([-n, -n, -n], [1, 1], -5)
[Integer(A216636(n).n(100)) for n in (0..18)] # Peter Luschny, Sep 23 2014
(PARI) a(n) = sum(k=0, n, binomial(n, k)^3 * 5^k); \\ Gheorghe Coserea, Jul 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 11 2012
EXTENSIONS
Minor edits by Vaclav Kotesovec, Mar 31 2014
STATUS
approved