OFFSET
0,3
COMMENTS
Eric Angelini defined this by saying that "a(n)+a(n+1) = concatenation of n and (n+1)".
An easy induction argument shows that a(n) is always positive.
FORMULA
The o.g.f. x*(1+10*x+810*x^9-720*x^10)/(1+x)/(1-x)^2 yields correct terms up to a(99), but not beyond. - M. F. Hasler, Aug 23 2012
EXAMPLE
a(100) = concat(99,100) - a(99) = 99 100 - 4590 = 94510.
MAPLE
f:=proc(i) i*10^(1+floor(evalf(log10(i+1), 10)))+i+1; end: # A001704
a:=proc(n) option remember; global f; if n=1 then 1 else f(n-1)-a(n-1); fi; end;
PROG
(PARI) A215027(n, print_all=0)={my(a=print_all & print1(0)); for(n=1, n, a=(n-1)*10^#Str(n)+n-a; print_all & print1(", "a)); a} \\ - M. F. Hasler, Aug 23 2012
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 04 2012, based on a posting to the Sequence Fans Mailing List by Eric Angelini.
EXTENSIONS
Initial term a(0)=0 added by M. F. Hasler, Aug 23 2012
STATUS
approved