[go: up one dir, main page]

login
A215016
Decimal expansion of the product of 1 - 1/2^2^n over all n >= 0.
9
3, 5, 0, 1, 8, 3, 8, 6, 5, 4, 3, 9, 5, 6, 9, 6, 0, 8, 8, 6, 6, 5, 5, 4, 5, 2, 6, 9, 6, 6, 1, 7, 8, 8, 6, 7, 6, 4, 2, 0, 8, 6, 5, 0, 2, 1, 7, 6, 9, 2, 1, 7, 6, 9, 7, 0, 6, 4, 8, 2, 3, 3, 8, 6, 0, 4, 8, 2, 5, 6, 3, 0, 5, 3, 6, 8, 6, 9, 6, 4, 4, 1
OFFSET
0,1
COMMENTS
Can be used to efficiently compute A014571: A014571 = 1/2 - (1/4) * A215016.
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), p.727 (rel. 38.1-5).
R. Schroeppel and R. W. Gosper, HACKMEM #122 (1972).
FORMULA
Equals Sum_{n>=0} A106400(n)/2^n. - Robert FERREOL, Jan 10 2022
From Amiram Eldar, Feb 19 2024: (Start)
Equals Product_{n>=0} (1 - 1/A001146(n)).
Equals 2/A258716.
Equals 1/(3/2 + A258714). (End)
EXAMPLE
0.35018386543956960886655452696617886764208650217692176970648233860482563...
MATHEMATICA
RealDigits[NProduct[1 - 1/2^2^n, {n, 0, Infinity}, WorkingPrecision -> 120]][[1]] (* Alonso del Arte, Jul 31 2012 *)
PROG
(PARI) prodinf(n=0, 1-1.>>2^n)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved