[go: up one dir, main page]

login
A214849
Number of n-permutations having all cycles of odd length and at most one fixed point.
3
1, 1, 0, 2, 8, 24, 184, 1000, 8448, 66752, 670976, 6771456, 80540800, 981684352, 13555365888, 193136762624, 3042586824704, 49558509465600, 877951349198848, 16081833643651072, 316609129672114176, 6439690754082062336, 139521103623589068800
OFFSET
0,4
COMMENTS
a(n) is also the number of n-permutations with exactly one square root. Cf. A003483 which counts n-permutations with at least one square root.
LINKS
FORMULA
E.g.f.: (1 + x)*((1+x)/(1-x))^(1/2)*exp(-x).
a(n) ~ 4*n^n/exp(n+1). - Vaclav Kotesovec, Oct 08 2013
EXAMPLE
a(6)= 184 because we have 144 6-permutations of the type (1,2,3,4,5)(6) and 40 of the type (1,2,3)(4,5,6). These have exactly one square root: (1,4,2,5,3)(6) and (1,3,2)(4,6,5).
MATHEMATICA
nn=22; Range[0, nn]! CoefficientList[Series[(1+x)((1+x)/(1-x))^(1/2) Exp[-x], {x, 0, nn}], x]
CROSSREFS
Sequence in context: A353779 A088994 A330505 * A141598 A071599 A047695
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Mar 08 2013
STATUS
approved