OFFSET
0,3
COMMENTS
Ramanujan-type sequence number 2 for argument 2Pi/9 is connected with the sequence A214699 (see also sequences A006053, A214683) - all have "similar" trigonometric description, for example in the case of a(n) the following formula hold true: 9^(1/3)*a(n) = (c(1)/c(4))^(1/3)*c(1)^n + (c(2)/c(1))^(1/3)*c(2)^n + (c(4)/c(2))^(1/3)*c(4)^n = -( (c(2)/c(1))^(1/3)*c(1)^(n+1) + (c(4)/c(2))^(1/3)*c(2)^(n+1) + (c(1)/c(4))^(1/3)*c(4)^(n+1) ), where c(j) := 2*Cos(2Pi*j/9) - for the proof see Witula et al.'s papers.
From a(0),A214699(0),a(2) and c(1)+c(2)+c(4)=0 we deduce
x^3 - 9^(1/3)*x - 1 = (x - (c(1)/c(2))^(1/3))*(x - (c(2)/c(4))^(1/3))*(x - (c(4)/c(1))^(1/3)), and
x^3 - 7*9^(1/3)*x - 1 = (x - (c(1)/c(2))^(1/3)*c(1)^2)*(x - (c(2)/c(4))^(1/3)*c(2)^2)*(x - (c(4)/c(1))^(1/3)*c(4)^2). We note that applying the Newton-Girard formulas to these polynomials two new sequences of real numbers can be discussed: X(n) := (c(1)/c(2))^(n/3) + (c(2)/c(4))^(n/3) + (c(4)/c(1))^(n/3), and Y(n) := ((c(1)/c(2))^(1/3)*c(1)^2)^n + ((c(2)/c(4))^(1/3)*c(2)^2)^n + ((c(4)/c(1))^(1/3)*c(4)^2)^n, where X(n)=9^(1/3)*X(n-2)+X(n-3), X(0)=3, X(1)=0, X(2)=2*9^(1/3), Y(n)=7*9^(1/3)Y(n-2)+Y(n-3), Y(0)=3, Y(1)=0, Y(2)=14*9^(1/3). It could be obtained the following decompositions: X(n) = ax(n) + 9^(1/3)*bx(n) + 81^(1/3)*cx(n), ax(0)=3, bx(0)=cx(0)=ax(1)=bx(1)=cx(1)=ax(2)=bx(2)=0, cx(2)=2, ax(n)=ax(n-3)+9*cx(n-2), bx(n)=bx(n-3)+ax(n-2), cx(n)=cx(n-3)+bx(n-2), and Y(n) = ay(n) + 9^(1/3)*by(n) + 81^(1/3)*cy(n), ay(0)=3, by(0)=cy(0)=ay(1)=by(1)=cy(1)=ay(2)=cy(2)=0, by(2)=14, ay(n)=ay(n-3)+63*cy(n-2), by(n)=by(n-3)+7*ay(n-2), cy(n)=cy(n-3)+7*by(n-2). All these new sequence of positive integers ax(n),bx(n),...,cy(n) will be presented separately as A214778, A214951, A214954. - Roman Witula, Sep 27 2012
We note that all sums a(n+1) + a(n) are divisible by 3, which easily from recurrence formula for a(n) follows. Then it can be deduced the formula a(n+1) + a(n) = -A214699(n). - Roman Witula, Oct 06 2012
REFERENCES
R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
LINKS
Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
Index entries for linear recurrences with constant coefficients, signature (0,3,-1).
FORMULA
G.f.: -(1-x+x^2)/(1-3*x^2+x^3).
EXAMPLE
MATHEMATICA
LinearRecurrence[{0, 3, -1}, {-1, 1, -4}, 40] (* T. D. Noe, Jul 30 2012 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roman Witula, Jul 28 2012
STATUS
approved