[go: up one dir, main page]

login
A214636
A213437 becomes periodic mod n starting at this position.
3
1, 1, 3, 2, 1, 3, 4, 3, 3, 1, 5, 3, 1, 4, 3, 4, 3, 3, 6, 2, 4, 5, 7, 3, 2, 1, 3, 4, 10, 3, 5, 4, 5, 3, 4, 3, 6, 6, 3, 3, 1, 4, 8, 5, 3, 7, 11, 4, 4, 2, 3, 2, 8, 3, 5, 4, 6, 10, 9, 3, 6, 5, 4, 5, 1, 5, 11, 3, 7, 4, 8, 3, 4, 6, 3, 6, 5, 3, 5, 4, 3, 1, 7, 4, 3, 8, 10, 5, 3, 3, 4
OFFSET
1,3
FORMULA
Empirically,
A214636(2^n) = (1,2,3,4,4,5,6,6,7,8,8,...) = A004523(n+2) for n>1.
A214636(3^n) = 3, A214636(7^n) = 4, A214636(11^n) = 5 for all n>0.
A214636(5^n) = A214636(10^n) = (1,2,5,8,11,...) = A016789(n-2) for n>1.
A214636(6^n) = (3,3,3,4,4,5,6,6,...) = A214636(2^n) for n>2.
A214636(15^n) = (3,3,5,8,11,...) = A214636(5^n) for n>2. - M. F. Hasler, Jul 24 2012
PROG
(PARI) A214636(n, N=199)={my(a=[Mod(1, n)]); for(n=1, N-1, a=concat(a, a[n]+(a[n]+1)*prod(k=1, n-1, a[k]))); for(p=1, N\3, forstep(m=N, p+1, -1, a[m]==a[m-p]&next; 3*m>N&next(2); return(m-p+1)); return(1))} /* the 2nd optional parameter must be taken large enough, at least 3 times the period length and starting position. The script returns zero if the period is not found (most probably due to these constraints). */
CROSSREFS
Sequence in context: A238556 A102288 A081248 * A318582 A318317 A129690
KEYWORD
nonn
AUTHOR
STATUS
approved