[go: up one dir, main page]

login
A214548
List of k such that A214686(k) = 1.
0
2, 3, 5, 7, 9, 11, 17, 25, 33, 35, 37, 39, 43, 45, 51, 57, 61, 63, 65, 69, 71, 73, 77, 79, 85, 91, 97, 103, 105, 109, 115, 121, 123, 127, 129, 137, 141, 153, 167, 171, 177, 179, 183, 185, 193, 199, 211, 213, 221, 225, 229, 235, 241, 245, 249, 255, 259, 261
OFFSET
1,1
COMMENTS
It seems that a(n) = 1 + floor(sqrt(A214686(a(n)+1))) which complies with an observation of Robert Israel.
LINKS
PROG
(Sage)
def A214548_list(n) : # n is a search limit
a = []; r = 1; f = 1
for k in (1..n) :
f = f * k
if k-1 == gcd(r-1, f) :
a.append(k); t = 1
else :
for t in range(r-1, -1, -1) :
if gcd(t, f) == 1 : break
r = (k+1)*(r-t)
return a
A214548_list(261)
CROSSREFS
Sequence in context: A066824 A036963 A120431 * A254440 A284914 A293262
KEYWORD
nonn,changed
AUTHOR
Peter Luschny, Jul 28 2012
STATUS
approved