[go: up one dir, main page]

login
A214418
Sum of absolute values of the character table of the symmetric group S_n.
2
1, 4, 9, 27, 61, 185, 469, 1428, 4292, 14456, 50040, 186525, 724023, 2952085, 12476584, 54670003, 246823085, 1148176939, 5479962138, 26831059535, 134411101756, 688922857792, 3604792968605, 19250556430137, 104789182807326, 581220024906812, 3280986439096740
OFFSET
1,2
LINKS
T. Kyle Petersen and Bridget Eileen Tenner, How to write a permutation as a product of involutions (and why you might care), arXiv:1202.5319 [math.CO], 2012.
EXAMPLE
The character table of S_3 is / 1 1 1 / 2 0 -1 / 1 -1 1 / and so a(3)=9.
MAPLE
P:=combinat[partition](n):
add(add(abs(combinat[Chi](l, m)), l in P), m in P);
PROG
(GAP) A214418 := n -> Sum(Irr(CharacterTable("Symmetric", n)), chi -> Sum(chi, x->AbsoluteValue(x))); # Eric M. Schmidt, Jul 18 2012, revised Sep 05 2012
CROSSREFS
Row sums of A214430. Compare with A082733. Conjecturally dominated by A164342.
Sequence in context: A067758 A357752 A304677 * A164342 A034527 A329155
KEYWORD
nonn
AUTHOR
Kyle Petersen, Jul 17 2012
STATUS
approved