[go: up one dir, main page]

login
A213723
a(n) = smallest natural number x such that x=n+A000120(x), otherwise zero.
18
0, 2, 0, 4, 6, 0, 0, 8, 10, 0, 12, 14, 0, 0, 0, 16, 18, 0, 20, 22, 0, 0, 24, 26, 0, 28, 30, 0, 0, 0, 0, 32, 34, 0, 36, 38, 0, 0, 40, 42, 0, 44, 46, 0, 0, 0, 48, 50, 0, 52, 54, 0, 0, 56, 58, 0, 60, 62, 0, 0, 0, 0, 0, 64, 66, 0, 68, 70, 0, 0, 72, 74, 0, 76, 78
OFFSET
0,2
LINKS
FORMULA
a(n) = 2*A213714(n).
Also, by partitioning into sums of distinct nonzero terms of A000225: if n can be formed as a sum of (2^a)-1 + (2^b)-1 + (2^c)-1, etc. where the exponents a, b, c are distinct and all > 0, then a(n) = 2^a + 2^b + 2^c, etc. If this is not possible, then n is one of the terms of A055938, and a(n)=0.
EXAMPLE
a(1) = 2, as 2 is the smallest natural number such that x such that x=1+A000120(x) (as 2=1+A000120(2)=1+1).
a(2) = 0, as there are no solutions for 2, because it belongs to A055938.
a(11) = 14, as 14 is the smallest natural number x such that x=11+A000120(x) (as 14=11+A000120(14)=11+3).
PROG
(Scheme): (define (A213723 n) (A005843 (A213714 n)))
(Haskell)
a213723 = (* 2) . a213714 -- Reinhard Zumkeller, May 01 2015
CROSSREFS
a(A055938(n)) = 0. a(A005187(n)) = A005843(n) = 2n.
Cf. A213724. Used for computing A213725-A213727. Cf. A179016.
Sequence in context: A121451 A265820 A096984 * A104601 A233673 A319931
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 01 2012
STATUS
approved