[go: up one dir, main page]

login
A212509
Number of (w,x,y,z) with all terms in {1,...,n} and w<2x and y<=3z.
4
0, 1, 12, 63, 180, 437, 891, 1628, 2736, 4392, 6600, 9646, 13608, 18669, 24990, 32955, 42432, 54033, 67797, 84010, 102900, 125118, 150282, 179444, 212544, 249977, 292032, 339687, 392196, 451165, 516375, 588336, 667392, 754908, 849660, 953922, 1067256
OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211795.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,2,2,-1,-4,0,2,0,-2,0,4,1,-2,-2,0,1).
FORMULA
a(n) = 2*a(n-2)+2*a(n-3)-a(n-4)-4*a(n-5)+2*a(n-7)-2*a(n-9)+4*a(n-11)+a(n-12)-2*a(n-13)-2*a(n-14)+a(n-16).
G.f.: x*(1 +12*x +61*x^2 +154*x^3 +288*x^4 +421*x^5 +505*x^6 +510*x^7 +487*x^8 +387*x^9 +246*x^10 +120*x^11 +42*x^12 +6*x^13) / ((1 -x)^5*(1 +x)^3*(1 -x +x^2)*(1 +x +x^2)^3). - Colin Barker, Dec 17 2015
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w < 2 x && y <= 3 z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212509 *)
PROG
(PARI) concat(0, Vec(x*(1 +12*x +61*x^2 +154*x^3 +288*x^4 +421*x^5 +505*x^6 +510*x^7 +487*x^8 +387*x^9 +246*x^10 +120*x^11 +42*x^12 +6*x^13) / ((1 -x)^5*(1 +x)^3*(1 -x +x^2)*(1 +x +x^2)^3) + O(x^60))) \\ Colin Barker, Dec 17 2015
CROSSREFS
Sequence in context: A349159 A092224 A335252 * A212249 A309372 A085463
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 20 2012
STATUS
approved