[go: up one dir, main page]

login
A212217
Number of representations of n as a sum of products of distinct pairs of positive integers >=2, n = Sum_{k=1..m} i_k*j_k with 2<=i_k<=j_k, i_k<=i_{k+1}, j_k<=j_{k+1}, i_k*j_k<i_{k+1}*j_{k+1}.
8
1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 3, 2, 5, 0, 7, 2, 8, 3, 10, 1, 15, 6, 14, 6, 21, 6, 28, 9, 26, 14, 38, 12, 50, 16, 47, 26, 70, 19, 82, 31, 87, 47, 111, 33, 141, 58, 143, 71, 182, 63, 228, 93, 231, 117, 289, 102, 364, 148, 354, 187, 462, 172, 537, 227
OFFSET
0,11
LINKS
EXAMPLE
a(0) = 1: 0 = the empty sum.
a(4) = 1: 4 = 2*2.
a(6) = 1: 6 = 2*3.
a(8) = 1: 8 = 2*4.
a(9) = 1: 9 = 3*3.
a(10) = 2: 10 = 2*2 + 2*3 = 2*5.
a(12) = 3: 12 = 2*2 + 2*4 = 2*6 = 3*4.
a(13) = 1: 13 = 2*2 + 3*3.
a(14) = 3: 14 = 2*3 + 2*4 = 2*2 + 2*5 = 2*7.
a(15) = 2: 15 = 2*3 + 3*3 = 3*5.
a(16) = 5: 16 = 2*3 + 2*5 = 2*2 + 2*6 = 2*2 + 3*4 = 2*8 = 4*4.
a(19) = 2: 19 = 2*2 + 2*3 + 3*3 = 2*2 + 3*5.
MAPLE
with(numtheory):
b:= proc(n, m, i, j) option remember;
`if`(n=0, 1, `if`(m<4, 0, b(n, m-1, i, j) +`if`(m>n, 0,
add(b(n-m, m-1, min(i, k), min(j, m/k)), k=select(x->
is(x>1 and x<=min(sqrt(m), i) and m<=j*x), divisors(m))))))
end:
a:= n-> b(n$4):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, m_, i_, j_] := b[n, m, i, j] = If[n == 0, 1, If[m < 4, 0, b[n, m - 1, i, j] + If[m > n, 0, Sum [b[n - m, m - 1, Min[i, k], Min[j, m/k]], {k, Select[Divisors[m], # > 1 && # <= Min [Sqrt[m], i] && m <= j*# &]}]]]];
a[n_] := b[n, n, n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 23 2017, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 06 2012
STATUS
approved