[go: up one dir, main page]

login
A211857
Number of representations of n as a sum of products of distinct pairs of integers larger than 1, considered to be equivalent when terms or factors are reordered.
14
1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 3, 2, 5, 1, 7, 3, 8, 5, 11, 4, 16, 9, 17, 12, 25, 13, 34, 20, 37, 28, 53, 32, 69, 46, 78, 63, 108, 71, 136, 100, 160, 134, 210, 152, 265, 211, 313, 268, 403, 316, 506, 421, 596, 528, 759, 629, 943, 814, 1111, 1016
OFFSET
0,11
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
G.f.: Product_{k>0} (1+x^k)^(A038548(k)-1). - Vaclav Kotesovec, Aug 19 2019
G.f.: Product_{i>=1} Product_{j=2..i} (1 + x^(i*j)). - Ilya Gutkovskiy, Sep 23 2019
EXAMPLE
a(0) = 1: 0 = the empty sum.
a(1) = a(2) = a(3) = 0: no product is < 4.
a(4) = 1: 4 = 2*2.
a(6) = 1: 6 = 2*3.
a(8) = 1: 8 = 2*4.
a(9) = 1: 9 = 3*3.
a(10) = 2: 10 = 2*2 + 2*3 = 2*5.
a(12) = 3: 12 = 2*2 + 2*4 = 2*6 = 3*4.
a(16) = 5: 16 = 2*2 + 2*6 = 2*2 + 3*4 = 2*3 + 2*5 = 2*8 = 4*4.
MAPLE
with(numtheory):
b:= proc(n, i) option remember; local c;
c:= ceil(tau(i)/2)-1;
`if`(n=0, 1, `if`(i<2, 0, b(n, i-1)
+add(b(n-i*j, i-1) *binomial(c, j), j=1..min(c, n/i))))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{c}, c = Ceiling[DivisorSigma[0, i]/2]-1; If[n==0, 1, If[i<2, 0, b[n, i-1]+Sum[b[n-i*j, i-1]*Binomial[c, j], {j, 1, Min[c, n/i]}]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 22 2012
STATUS
approved